Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, you must fully state it. If you give an example then you must prove it is such. Please write clearly.

Questions

(1) Suppose A, B are non-empty subsets of \mathbb{R}. Suppose also that for any $a \in A$ and $b \in B$ we have $a<b$.
(a) Show that $\inf (B) \geq \sup (A)$
(b) Is it always true that $\inf (B)>\sup (A)$?
(2) State the nested interval property and use part (A) of the previous theorem to prove it.
(3) Without using the nested interval property, show that

$$
\bigcap_{n=1}^{\infty}\left[0, \frac{1}{n}\right]=\{0\}
$$

(4) Show that if $A \subset B \subset \mathbb{R}$ then

$$
\inf (B) \leq \inf (A) \leq \sup (A) \leq \sup (B)
$$

(5) Let $A \subset \mathbb{R}$ be a set which is above below and is nonempty.
(a) Recall one definition of supremum for the set A.
(6) Denote by B the set

$$
B:=\{3 a: a \in A\} .
$$

Show that

$$
\sup (B)=3 \sup (A)
$$

(7) (a) Show that for $A, B \subset \mathbb{R}$ we have

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

where $A+B:=\{a+b: a \in A, b \in B\}$
(b) If we set $A-B:=\{a-b: a \in A, b \in B\}$, is it true that

$$
\sup (A-B)=\sup (A)-\sup (B) ?
$$

(8) Show that $|x-a|<\epsilon$ if and only if $x \in(a-\epsilon, a+\epsilon)$.
(9) Show that if $a \neq b$ are real numbers then there is an $\epsilon>0$ such that

$$
V_{\epsilon}(a) \cap V_{\epsilon}(b)=\emptyset
$$

(10) Show that there exists a real number x such that $x^{2}=3$.
(11) Show that there is no rational number r such that $r^{2}=3$.
(12) Section 2.4 \#11
(13) Section 3.1 \#5
(14) Suppose $\left(x_{n}\right)$ is a sequence of real numbers such that $\lim _{n \rightarrow \infty} x_{n}=3$. Show that for some $N \in \mathbb{N}$ we have that $n>N$ implies $x_{n}>1$.
(15) Show that the sequence $a_{n}=(-1)^{n} \cdot n^{2}$ diverges.
(16) Section 3.2, \#5
(17) Section 3.2, \#7
(18) Section 3.2, \#20
(19) Section 3.3 \#1
(20) Section 3.3 \#7
(21) (10 points) Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive real numbers such that $u_{1}=10$ and for all $n \in \mathbb{N}, u_{n+1}=2+\frac{1}{2} u_{n}$.
(a) Show by induction that $u_{n} \geq 4$ for all $n \in \mathbb{N}$.
(b) Show that the sequence is non-increasing.
(22) (10 points) Let (u_{n}) be the sequence from the previous question. You may use what you know from that question. Let

$$
a=\inf \left\{u_{n}: n \in \mathbb{N}\right\} .
$$

(a) Use the definition of limit to show that the sequence $\left(u_{n}\right)$ is convergent to a.
(b) Find a.

