Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, you must fully state it. If you give an example then you must prove it is such. Please write clearly.

QUESTIONS

- (1) Suppose A, B are non-empty subsets of \mathbb{R} . Suppose also that for any $a \in A$ and $b \in B$ we have a < b.
 - (a) Show that $\inf(B) \ge \sup(A)$
 - (b) Is it always true that $\inf(B) > \sup(A)$?
- (2) State the nested interval property and use part (A) of the previous theorem to prove it.
- (3) Without using the nested interval property, show that

$$\bigcap_{n=1}^{\infty} [0, \frac{1}{n}] = \{0\}$$

(4) Show that if $A \subset B \subset \mathbb{R}$ then

$$\inf(B) \le \inf(A) \le \sup(A) \le \sup(B)$$

- (5) Let $A \subset \mathbb{R}$ be a set which is above below and is nonempty.
 - (a) Recall one definition of supremum for the set A.
- (6) Denote by B the set

$$B:=\{3a:a\in A\}.$$

Show that

$$\sup(B) = 3\sup(A).$$

(7) (a) Show that for $A, B \subset \mathbb{R}$ we have

$$\sup(A+B) = \sup(A) + \sup(B)$$

where $A + B := \{a + b : a \in A, b \in B\}$

(b) If we set $A - B := \{a - b : a \in A, b \in B\}$, is it true that

$$\sup(A - B) = \sup(A) - \sup(B)?$$

- (8) Show that $|x a| < \epsilon$ if and only if $x \in (a \epsilon, a + \epsilon)$.
- (9) Show that if $a \neq b$ are real numbers then there is an $\epsilon > 0$ such that

$$V_{\epsilon}(a) \cap V_{\epsilon}(b) = \emptyset$$

- (10) Show that there exists a real number x such that $x^2 = 3$.
- (11) Show that there is no rational number r such that $r^2 = 3$.
- (12) Section 2.4 #11
- (13) Section 3.1 #5

- (14) Suppose (x_n) is a sequence of real numbers such that $\lim_{n\to\infty} x_n = 3$. Show that for some $N \in \mathbb{N}$ we have that n > N implies $x_n > 1$.
- (15) Show that the sequence $a_n = (-1)^n \cdot n^2$ diverges.
- (16) Section 3.2, #5
- (17) Section 3.2, #7
- (18) Section 3.2, #20
- (19) Section 3.3 #1
- (20) Section 3.3 #7
- (21) (10 points) Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers such that $u_1=10$ and for all $n\in\mathbb{N}, u_{n+1}=2+\frac{1}{2}u_n$.
 - (a) Show by induction that $u_n \geq 4$ for all $n \in \mathbb{N}$.
 - (b) Show that the sequence is non-increasing.
- (22) (10 points) Let (u_n) be the sequence from the previous question. You may use what you know from that question. Let

$$a = \inf\{u_n : n \in \mathbb{N}\}.$$

- (a) Use the definition of limit to show that the sequence (u_n) is convergent to a.
- (b) Find a.